Background

‘Figure 1.2 contains examples of data movement operations for SIC and
SIC/XE. There are no memory-to-memory move instructions; thus, all data
movement must be done using registers. Figure 1.2(a) shows two examples of
data movement. In the first, a 3-byte word is moved by loading it into register
A and then storing the register at the desired destination. Exactly the same
thing could be accomplished using register X (and the instructions LDX, STX)
or register L (LDL, STL). In the second example, a single byte of data is moved
using the instructions LDCH (Load Character) and STCH (Store' Character).
These instructions operate by loading or storing the rightmost 8-bit byte of
register A; the other bits in register A are not affected.

‘Figure 1.2(a) also shows four different ways of defining storage for data
items in the SIC assembler language. (These assembler directives are discussed
in more detail in Section 2.1.) The statement WORD reserves one word of stor-
age, which is initialized to a value defined in the operand field of the state-
ment. Thus the WORD statement in Fig. 1.2(a) defines a data word labeled
FIVE whose value is initialized to 5. The statement RESW reserves one or

LDA FIVE LOAD CONSTANT 5 INTO REGISTER A

STA ALPHA STORE IN ALPHA
LDCH CHARZ LOAD CHARACTER ‘Z’ INTO REGISTER A
STCH cl STORE IN CHARACTER VARIABLE Cl

ALPHA RESW

1 ONE-WORD VARIABLE
FIVE WORD 5 ONE-WORD CONSTANT
CHARZ BYTE crz’ ONE-BYTE CONSTANT
Cl RESB 1 ONE-BYTE VARIABLE
(a)
LDA #5 LOAD VALUE 5 INTO REGISTER A
STA ALPHA STORE IN ALPHA
LDA #90 LOAD ASCII CODE FOR ‘2’ INTO REG A
STCH c1 ' STORE IN CHARACTER VARIABLE Cl
ALPHA RESW 1 ONE-WORD VARIABLE
Cc1 RESB 1 ONE-BYTE VARIABLE

(b)

Figure 1.2 Sample data movement operations for (a) SIC and
{(b) SIC/XE.

15

16

System Software

more words of storage for use by the program. For example, the RESW state-
ment in Fig. 1.2(a) defines one word of storage labeled ALPHA, which will be
used to hold a value generated by the program.

The statements BYTE and RESB perform similar storage-deflmtlon func-
tions for data items that are characters instead of words. Thus in Fig. 1.2(a)
CHARZ is a 1-byte data item whose value is initialized to the character AR
and C1 is a 1-byte variable with no initial value.

The instructions shown in Fig. 1.2(a) would also work on SIC/XE; how-
ever, they would not take advantage of the more advanced hardware features
available. Figure 1.2(b) shows the same two data-movement operations as
they might be written for SIC/XE. In this example, the value 5 is loaded into
register A using immediate addressing. The operand field for this instruction
contains the flag # (which specifies immediate addressing) and the data value
to be loaded. Similarly, the character “Z” is placed into register A by using
immediate addressing to load the value 90, which is the decimal value of the
ASCII code that is used internally to represent the character “Z”.

Figure 1.3(a) shows examples of arithmetic instructions for SIC. All arithmetic
operations are performed using register A, with the result being left in register A.
Thus this sequence of instructions stores the value (ALPHA + INCR - 1) in BETA
and the value (GAMMA + INCR - 1) in DELTA.

Figure 1.3(b) illustrates how the same calculations could be performed on
SIC/XE. The value of INCR is loaded into register S initially, and the register-
to-register instruction ADDR is used to add this value to register A when it is
needed. This avoids having to fetch INCR from memory each time it is used in
a calculation, which may make the program more efficient. Immediate
addressing is used for the constant 1 in the subtraction operations.

Looping and indexing operations are illustrated in Fig. 1.4. Figure 1.4(a)
shows a loop that copies one 11-byte character string to another. The index
register (register X) is initialized to zero before the loop begins. Thus, during
the first execution of the loop, the target address for the LDCH instruction will
be the address of the fir5t byte of STR1. Similarly, the STCH instruction
will store the character being copied into the first byte of STR2. The next
instruction, TIX, performs two functions. First it adds 1 to the value in register
X, and then it compares the new value of register X to the value of the operand
(in this case, the constant value 11). The condition code is set to indicate the
result of this comparison. The JLT instruction jumps if the condition code is set
to “less than.” Thus, the JLT causes a jump back to the beginning of the loop if
the new value in register X is less than 11.

During the second execution of the loop, register X will contain the value 1.
Thus, the target address for the LDCH instruction will be the second byte of
STR1, and the target address for the STCH instruction will be the second byte
of STR2. The TIX instruction will again add 1 to the value in register X, and the

